If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-72=0
a = 2; b = 2; c = -72;
Δ = b2-4ac
Δ = 22-4·2·(-72)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{145}}{2*2}=\frac{-2-2\sqrt{145}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{145}}{2*2}=\frac{-2+2\sqrt{145}}{4} $
| 2.25-x2=3.6x | | 4(3x-12)-12x-7=2 | | 6u+5=8U | | -80=-4(3n+5) | | 4+6x=-38 | | 0.5x=0.4x+25 | | ×+y=11 | | 3y+3=-1y+-3 | | m=(7m+3) | | 1/3(q+3)=9 | | 8*3x=5*x | | -4(u+9)=-8u-28 | | ×+y=5×-y=4 | | 1/39x+3=3x+1 | | 108=-12n-4(-5n÷7) | | 3p^2p=2 | | -7u+5(u-8)=-30 | | t-7=20 | | t=(11t-17) | | 1/4r+4=3r-7 | | 6x+7x+11+143=180 | | (15-11)x(25/5)= | | 5x+3+52+128=180 | | -3.5-5x=19.5 | | 3x/2+x/4=13 | | 58/16=16c | | 6+w=5 | | p/2-2+2=2 | | 5x+4=-13x-32 | | 52+128+5x+3=180 | | 28.5c=37.8 | | 2-7x=-x+20 |